LINEAR OPERATORS ON Lp FOR 0
نویسنده
چکیده
If 0 < p < 1 we classify completely the linear operators T: Lp -X where X is a p-convex symmetric quasi-Banach function space. We also show that if T: LLo is a nonzero linear operator, then forp < q < 2 there is a subspace Z of Lp, isomorphic to Lq, such that the restriction of T to Z is an isomorphism. On the other hand, we show that if p < q < o, the Lorentz space L(p, q) is a quotient of Lp which contains no copy of IP.
منابع مشابه
Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملThe M-ideal structure of some algebras of bounded linear operators
it is called nontrivial if {0} 6= J 6= X. This notion was introduced by Alfsen and Effros [1] and has proved useful in Banach space geometry, approximation theory and harmonic analysis; see [12] for a detailed account. A number of authors have studied the M -ideal structure in L(X), the space of bounded linear operators on a Banach space X, with special emphasis on the question whether K(X), th...
متن کاملCommutators on L p , 1 ≤ p < ∞ †
The operators on Lp = Lp[0, 1], 1 ≤ p < ∞, which are not commutators are those of the form λI + S where λ , 0 and S belongs to the largest ideal in L(Lp). The proof involves new structural results for operators on Lp which are of independent interest.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008